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Abstract

The symmetry-adapted encodings (SAEs) provide a useful tool to reduce the computational requirements of the
simulation of molecular systems on quantum computers. This is achieved by harnessing the physical symmetries
of the molecular system under consideration. They can also enable qubit-based complete active space
approximation. The present work explores aspects of the symmetry-adapted encoding in the form of an open-
source Python software, QuantumSymmetry, by considering a simple example of molecular system, that of the

water molecule.

1 Introduction

Previous work has introduced the symmetry-adapted
encodings (SAEs) [1] as a useful tool to reduce the
computational requirements of the simulation of
molecular systems on quantum computers. This is
achieved by harnessing the physical symmetries of the
molecular system under consideration, and specifically
certain subgroups of the point-group (i.e. geometrical
symmetries) and of number of up/down electron
operators (spin along the z-axis being conserved under
the purely non-relativistic approximation). The theory
of symmetry-adapted encodings has been further
expanded to perform qubit-based complete active
space approximation: this is the subject of further
work currently in the manuscript phase.

The present work explores aspects of the symmetry-
adapted encoding in the form of an open-source
Python software, QuantumSymmetry [2], by
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Fig. 1: The water molecule (H,O) and its four point-
group symmetries. Reproduced with permission from

[1].

https://doi.org/10.1049/icp.2023.3268

considering one simple example of a molecular
system, that of the water molecule (H,O). The
theoretical aspects will only be touched on and the
reader is invited to review the existing literature.

2 Symmetries of the water molecule

The water molecule in its optimal geometry has four
point-group symmetries, which together form the
point-group group C,,: the identity element £ (which
is equivalent to not doing anything at all), the rotation
by 180 degrees along the z-axis C»(z) (shown in Fig. 1
as a green line), the reflection across the xz-plane o(xz)
(blue plane), and the reflection across the yz-plane

o(yz) (red plan).

If a water molecule is rotated by 180 degrees around
its principal axis its two hydrogen atoms exchange
places, but the resulting geometry is indistinguishable
from the one before the rotation was performed: in this
sense, the 180-degree rotation around the principal
axis Cy(z) is a symmetry of the water molecule. The
geometrical symmetries of the water molecule form
what is known as its point group. Each point-group
symmetry in C,, repeated twice gives the identity (for
example C,(z) x Cx(z) = E): C,, is a Boolean group.

The conservation of the number of electrons in spin up
N; and spin down N, furnish further symmetries. More
in detail, the symmetries employed by the symmetry-
adapted encodings are the parity (even/odd) of the
number of spin up and down P; = (-1) and P, = (-
DM
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Fig. 2: The 7 water molecule molecular orbitals in a minimal basis labeled according to their point-group
irreducible representation (in order of increasing energy from the right, following the little endian convention
common in quantum computing). Reproduced with permission from [1].

The symmetries described above taken together allow
for a reduction in qubit count of up to 4 qubits for the
water molecule examples: 2 qubits are reduced due to
the point-group symmetries and a further 2 qubits are
reduced due to the parity conservation symmetries. In
general, the number of qubits reduced from
symmetries is between 2 and 5 depending on the level
of symmetry of the molecule under consideration.

3 Jordan-Wigner Hamiltonian for
the water molecule in the STO-3G basis

The Jordan-Wigner fermion-to-spin encodings maps
electronic of a molecule states to qubit states on a
quantum computer in the most natural way: every
molecular orbital corresponds to two spin-orbitals
(each corresponding to an electron with spin up or
spin down), and each spin-orbital is mapped in one-to-
one correspondence to a qubit. Slater determinants
(electronic states that correspond to well-defined
occupations of spin-orbitals) are thus sent to
computational basis states, and superpositions of
Slater determinants are mapped to the corresponding
superpositions of computational basis states.

The molecular orbitals for the water molecule in a
minimal basis (STO-3G basis) are shown in Fig 2.

The Jordan-Wigner encodings maps physical
operators such as the second-quantised Hamiltonian
(the operator associated with the energy of the
electrons of the molecule) into a weighted sum of
Pauli terms, i.e. tensor products of one-qubit Pauli
operators X, Y and Z acting on the n qubits, where # is
the number of spin-orbitals.

We are going to consider the water molecule in the
configuration where the oxygen atom is positioned at
(0, 0.1167) and the two hydrogen atoms are positioned
at (0.7562, -0.4668) and (-0.7562, -0.4668), with
distances are measured in A.

The Jordan-Wigner Hamiltonian for the water
molecule in the STO-3G basis has 1,086 Pauli terms
acting on 14 qubits. The first few terms are of the
form:

H = -46.41219 + 12.41370 Z, + 12.41370 Z, +
1.65714 2, +1.65714 Z; + ...

where energy is measured in Ha.

The eigenvalue that corresponds to the ground state
energy for this Hamiltonian is E = -75.011754935519
Ha

A circuit for a typical VQE [3] ansatz such as unitary
coupled clusters with singles and double excitations
(UCCSD) displays measures of complexity that make
the circuit practically unfeasible on current quantum
devices, e.g. a circuit depth (the number of gates in the
longest path in the circuit) and CNOT gate count (the
total number of CNOT gates in the circuit) of at least
thousands of gates.

4 The symmetry-adapted
Hamiltonian for the water molecule in the
STO-3G basis

By harnessing the physical symmetries of the water
molecule, the symmetry-adapted encoding is able to
reduce the number of qubits necessary for the
simulation of the water molecule from 14 qubits to 10
qubits. This is done by restricting the Hilbert space of
qubits to one corresponding to a common eigensector
of the symmetry operators under consideration.

For example, when the object of interest is the ground
state of the water molecule, the Hartree-Fock state (the
single Slater determinant that best approximates the
ground state) is closed-shell and hence in the
symmetry eigensector that is symmetric (eigenvalue
equal to 1) with respect to each of the point-group
operators C»(z), o(xz) and o(yz). The ground state is
antisymmetric (eigenvalue equal to -1) with respect to
the parity of spin up and down operators P; and P,, as
there is an odd number (5) of electrons with spin
up/down.

These constraints mean that of the 14 spin-orbital
occupancies, 2 are made redundant by the point-group
constraints (one of the point-group operators in this
example does not add an independent constraint, as for
example Cx(z) = o(xz) % a(yz), so that symmetry with
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respect to both o(xz) and o(yz) already implies
symmetry with respect to Cx(z): we just need consider
the generators of the point group), and a further 2 are
made redundant by the parity operators.

Thus 4 of the original 14 qubits can be discarded, and
the occupancy of the corresponding spin-orbitals can
be deduced from the remaining 10 qubits. Once the
choice of redundant qubits has been made, the
symmetry-adapted encoding provides a way to
construct the qubit operators corresponding to physical
operators such as the Hamiltonian.

In particular the Hamiltonian for water in the STO-3G
basis under the symmetry-adapted encoding can be
obtained by use of the following code in
QuantumSymmetry:

reduced_hamiltonian(atom ='0 0 0 0.1167; HO
0.7562 -0.4668; H 0 -0.7562 -0.4668',

basis = ‘sto-3g’,

charge =0,

spin=0

)

The wuser can set the optional argument

output_format = 'giskit’ to obtain the symmetry-
adapted Hamiltonian as a Qiskit [4] Pauli sum
operator object or to 'openfermion’ to obtain an
OpenFermion [5] qubit operator object (defaults to
OpenFermion).

The output is the sum of 1,035 Pauli terms acting on
10 qubits. The first few Pauli terms are of the form:

H = -4619215 - 12.41370 Z,2,Z.Z.Z,Z, -
12.41370 Z,2,2:2.Z,Z, + 2.74250 Z, + 1.65714 Z,
+ ..

The eigenvalue that corresponds to the ground state
energy of the symmetry-adapted Hamiltonian is
75.011754935519 Ha, the same as the Jordan-Wigner
Hamiltonian to the order of 102 Ha, showing the
general feature that symmetry-adapted encoding with
exact symmetries are an exact procedure that does not
affect the value of measurable energies.

While the symmetry-adapted Hamiltonian gives rise to
a UCCSD circuit whose circuit depth and CNOT
count reduced by a factor of 5 with respect to the
original Jordan-Wigner Hamiltonian, the complexity
of such a circuit is still prohibitive for current quantum
devices.

5 The water molecule in active space
CAS4,4)
The active space approximation [6] classifies

molecular orbitals into three categories: frozen core

orbitals, active space orbitals and virtual orbitals. The
frozen core orbitals are assumed to be fully occupied,
the virtual ones are assumed to be unoccupied, and a
certain number of electrons are allowed to be excited
from and to the active space orbitals only. In the
literature it is common to use the notation CAS(n, m)
to specify the number of active electrons n, and the
number of active molecular orbitals m.

The formalism of the symmetry-adapted encodings
can be employed to perform qubit-based complete
active space approximation (the subject of further
work currently in the manuscript phase). Furthermore
the formalism that has been developed can be
compounded with the existing formalism for point-
group and parity symmetries, leading to a further
reduction in complexity.

For the water molecule example, a CAS(4, 4)
approximation would result in 8 active-space spin
orbitals. This can be encoded in just 4 qubits if the
active orbitals are taken to be 3a;, 1b;, 4a, and 2b,
(respectively orbital 4, 5, 6 and 7), by employing the
point-group and parity symmetries.

The user can do this by setting the optional argument
CAS = (4, 4) when calling the
reduced__hamiltonian function.

The resulting Hamiltonian has just 62 terms acting on
4 qubits. The first few terms are of the form:

H = -72.73209 + 0.85365 Z,Z, + 0.60520 Z,Z, +
0.60520 7,7, + 0.57203 2,Z, + 0.57203 Z,Z,, + ...

It is important to note that the CAS approximation will
introduce an error in the ground state energy. In this
case the ground state energy corresponding to the CAS
symmetry-adapted = Hamiltonian is E -
74.969911454158 Ha. However when the CASCI
energy for the same active space is evaluated with a
traditional quantum chemistry software such as
PySCEF, the corresponding energy is found to be E = -
74.969911454158 Ha, giving again an agreement in
the order of 10" Ha.

The resulting UCCSD circuit is reduced in complexity
by orders of magnitude, with circuit depth of 134 gates
and CNOT-count of 64 gates.

However, it was found that the VQE on the linear
TwoLocal circuit [7] on 4 qubits with Ry gates and
CNOTs and two repeated blocks converges to a value
of the ground state energy that is closer to the exact
one, with an even lower complexity, with circuit depth
of 16 and CNOT-count of 12, allowing for practical
simulation of larger molecules such as the water
molecule on existing quantum computers.

6 Active space selection
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The importance of active space optimization in
quantum chemistry computations was noted in [8].
With respect to the water molecule example, the
authors note that a choice of active space for CAS(4,
4) that captures a larger portion of the correlation
energy is given by 1b,, 3a,, 4a, and 2b, (respectively
orbital 3, 4, 6 and 7).

The user is able to manually specify which orbitals are
selected to form the active space by setting the
optional argument active_mo = [3,4,6,7]. This
results in the qubit Hamiltonian made up of 132 terms
on 5 qubits:

H = -72.95527 + 0.46991 Z,Z, + 0.34536 Z,Z, +
0.31342 Z,Z, + 0.30563 Z,Z,Z,Z + ...

This time the qubit reduction due to exact symmetries
is of 3 qubits (as opposed to 4 qubits). This is because
the active-space orbitals selected are all in either the
A; or the B, irreducible point group representation,
effectively reducing the symmetry from the C,, point
group to the smaller C, group.

The ground state energy associated with this
Hamiltonian has energy -74.994776500138 Ha, again
showing agreement to 107'? Ha with the energy
calculated with a traditional quantum chemistry
package.

7 Larger basis set

The qubit-based active space approximation allows us
to consider active spaces in a larger basis than the
minimal basis at the cost of more classical
preprocessing but no extra cost in terms of quantum
computing resources. The output Hamiltonian for a
larger basis set with CAS(4, 4), namely Dunning's
correlation consistent basis sets cc-pVDZ [9], has the
same number of Pauli terms (132 terms on 5 qubits).

H = -74.30120 + 0.47453 Z,2,Z, + 0.47453
Z.Z,Z, + 0.43360 Z, + 0.43360 Z,Z,Z, + ....

The exact ground state energy for this example is -
76.03016669691 Ha, with agreement to 10" Ha with
the energy calculated with a traditional quantum
chemistry package.

8 Excited states

By selecting a different target irreducible
representation (setting the optional argument irrep =
‘B1") QuantumSymmetry is able to construct a qubit
Hamiltonian whose lowest eigenvalue is the first
excited state of the water molecule, with an energy of
-75.546986405341 Ha for the cc-pVDZ basis set with
CAS(4, 4) and the same active space selection as in

the last two sections. This is made up of 121 terms on
5 qubits:

H =-74.30120 I + 0.47453 Z, Z, Z, + -0.47453 Z,
Z,Z, +0.43360 Z, + -0.43360 Z, Z, Z, + 0.19500
Z,7,+0.19500Z, Z, + ...

9 Conclusion

Examples of applications of symmetry-adapted
encodings have been presented in relation to a simple
molecular system, that of the water molecule. In
particular, we have shown that although the problem is
too complex for the framework of current quantum
devices when approached through the customary
Jordan-Wigner encoding, it simplifies considerably
and becomes tractable when the exact procedure of
symmetry-adapted encodings is employed in
combination with the complete active space
approximation, allowing for molecules to be simulated
on a systems of a few (e.g. 4-5) qubits and for the
measure of related circuit complexity with
applications such as the VQE reduced by various
orders of magnitude.
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